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An approximate theory is developed to describe the properties of mobile particles with extended charge
distributions in the presence of a neutralizing fixed background charge. Long-wavelength fluctuations of the
electric potential are handled within a variational perturbation approximation, and the short-wavelength fluc-
tuations are handled within a cumulant �fugacity� expansion. The distinct treatment of these two contributions
to the free energy enables the theory to provide quantitative predictions for the properties of these systems from
the weak- to the strong-coupling regimes. With this theory, we study three different variations in the classical
one-component plasma model: a plasma of point charges, a plasma of particles consisting of 8 linearly bonded
point charges �8-mer�, and a plasma of line charges. The theory was found to agree well with the available
computer simulation data for the electrostatic interaction energy of these systems for all values of the plasma
coupling parameter examined ��=0 to 400�. In addition, we find that both the 8-mer rod and the line charge
systems form a strongly ordered nematic phase, which is entirely driven by electrostatic interactions. The
nematic phase only exists within a finite range of lengths of the charged particles. If the particles are too short
or too long, the nematic phase does not appear. Finally, we find that the nematic phase is stable over a broader
range of conditions for the line charge system than for the 8-mer rod system; consequently, the phase behavior
of the one-component plasma is sensitive to the manner in which the charge is distributed on the particles.
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I. INTRODUCTION

Electrostatic interactions play a significant role in deter-
mining the properties of many soft matter systems; conse-
quently, they have received a lot of attention over the last
hundred years. One of the simplest systems that possesses
electrostatic interactions is the classical one-component
plasma �OCP� �1,2�, which consists of mobile point charges
in a rigid neutralizing background charge. In addition to pro-
viding a starting point to test theories, the classical OCP is
also a good physical model for important systems, such as
the interior of massive planets and the classical electron gas.
Much of the theoretical work on this system has been based
on integral equation approaches, such as the mean spherical
approximation �3,4�, the hypernetted-chain �HNC� approxi-
mation �5,6�, the reference HNC approximation �7�, and the
hybrid HNC and Percus-Yevick closures �8�. These theories
provide accurate descriptions for both the structure and ther-
modynamic properties in comparison to computer simulation
data; however, due to their complexity, computational ex-
pense, and lack of a physical motivation for the approximate
closure relations, the development of other simpler methods
have been pursued to model the OCP. Examples include the
correlation hole corrected Debye-Hückel theory �9� and field
theory approaches with a high wave-vector cutoff �10,11�.
These simpler approaches can also describe the computer
simulation data, which indicates that they capture the essen-
tial physics. However, the downside of these approaches is
the need to include an empirical parameter, based on physi-
cal grounds, such as the size of the correlation hole �9,12� or
the magnitude of a high wave-vector cutoff �10,11�.

Related to the OCP are systems of counterions near
charged surfaces, which has been extensively studied with
both theory and computer simulation. These systems can be
viewed as a one-component plasma, but with the background
charge concentrated on surfaces rather than uniformly dis-
tributed in space. When the electrostatic interactions are
weak, these systems are well described by the Poisson-
Boltzmann theory; however, this theory breaks down at high
surface charge densities and cannot describe the attractive
interactions that occur between similarly charged surfaces at
these conditions �13�. Corrections to the Poisson-Boltzmann
theory can be obtained systematically through a loop expan-
sion; unfortunately, high-order calculations, which become
increasingly complex, are required to obtain accurate results
when the electrostatic interactions become significant. In the
limit of extremely high electrostatic couplings, a strong-
coupling expansion �14,15� has been successfully developed.
This is essentially an expansion in the fugacity of the coun-
terions. The region of intermediate electrostatic couplings is,
however, problematic. One approach to describe these con-
ditions relies on the use of test charges; this includes the
modified Poisson-Boltzmann theory �16–18� and the work of
Burak et al. �19�.

One fruitful approach for dealing with the difficult nature
of these systems at all electrostatic couplings is to divide the
Coulomb interactions into short-wavelength and long-
wavelength contributions �20–23� and to treat each of
these within a separate approximation scheme. The short-
wavelength fluctuations of the electric potential, which are
due to highly interacting counterions, are well approximated
within the strong-coupling expansion; the long-wavelength
fluctuations are weak and are well approximated by a mean-
field or loop expansion. This approach leads to a theory �23�,
which is capable of quantitatively predicting the properties
of the charged plate/counterion system from the weak- to the*leo.lue@manchester.ac.uk
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strong-coupling regimes, even in the presence of dielectric
inhomogeneities. One major advantage of this theory is that
it has a similar computational complexity to the original
Poisson-Boltzmann theory.

A simple extension of the OCP model is to replace the
point charges with particles that have an extended charge
distribution. One example is a system of line charges, which
serves as a simple model of linear polyelectrolyte solutions.
Within this model, the counterions that are present in real
polyelectrolyte solutions are represented by the rigid neutral-
izing background charge. Because of their significance in
many practical applications and their interesting behavior,
there are a tremendous number of theoretical studies of poly-
electrolyte solutions, and we refer the readers to the review
articles �24–26�. In this work, however, we limit ourselves to
the OCP model, which can be considered as providing a
description of polyelectrolyte solutions that is complemen-
tary to the cell model �27–33�. In the cell model, the coun-
terions are explicitly considered; however, the correlations
between the polyelectrolytes are only indirectly accounted
for. In the case of the OCP, the correlations between the
polyelectrolytes are explicitly considered; however, the
counterions are only considered as a uniform background
charge.

Deutsch and Goldenfeld studied �34,35� the OCP of line
charges with a theory based on an extension of the Debye-
Hückel theory and found that it exhibited a strong first-order
isotropic to nematic ordering of the lines. Integral equation
theories �26,36,37� have also been used to describe systems
of rodlike polyelectrolytes. Typically, these approaches work
well for low electrostatic coupling and polyelectrolyte den-
sities but only qualitatively at high electrostatic coupling and
high densities. Carri and Muthukumar �38� developed theo-
ries for linear rod polyelectrolytes, with an effective pair
potential to represent a screened Coulomb interaction, to cal-
culate the thermodynamic behavior of semidilute solutions.
A loop expansion approach was taken by Potemkin and
Khokhlov �39–41� to study the nematic ordering of rodlike
polyelectrolytes in dilute solutions. Due to the nature of the
approximations made, these theories are typically limited to
relatively weakly charged polyelectrolytes.

In this work, we develop a simple field-theoretic approach
for the one-component plasma model. By treating the short-
and long-wavelength fluctuations of the electric potential
within separate approximations, the theory can successfully
describe the OCP over a broad range of coupling parameters.
This work is an extension of previous work �23� for point-
charge systems to particles with extended charge distribu-
tions. The remainder of this paper is organized as follows. In
Sec. II, we develop a field-theoretic approach to describing
charged particles. This approach divides the short- and long-
wavelength phenomena and treats them within different ap-
proximations. Consequently, it is able to accurately describe
the properties of charge systems, even when they are
strongly coupled. In Sec. III, we then apply this theory to the
classical OCP of point charges, comparing the results with
available simulation data. In Sec. IV, we proceed to examine
a system, where the point charges are rigidly bonded into a
linear rod. The theoretical predictions are compared against
molecular-dynamics simulations. We then study a one-

component plasma of line charges in Sec. V. In Sec. VI, we
analyze the possibility of formation of an orientationally or-
dered nematic phase by the charged rod systems. We find
that under certain conditions, these systems possess a strong
isotropic to nematic transition driven purely by the electro-
statics. Finally, the main findings of this paper are summa-
rized in Sec. VII.

II. THEORY

In this work, we consider a one-component plasma of
identical particles in a fixed neutralizing background charge
density ��r� and a dielectric constant �. Each of the particles
has a rigid charge distribution with a total charge q. The
charge density Q�r ,�� due to a particle located at the origin
and in orientation � is given by

Q�r,�� =� dsq�s��3�r − A��� · �R�s�� , �1�

where �R�s� is the position of segment s of the particle rela-
tive to some reference orientation and position within the
molecule, q�s� is the charge of segment s of the particle, and
A��� is a rotation matrix, which transforms the particle from
its reference orientation to the orientation �.

The charge density q�r� of mobile particles is given by

q�r� = �
k

Q�r − Rk,�k� . �2�

The total charge density Q�r� in the system is given by the
sum of the contributions from the mobile particles and the
fixed background charge

Q�r� = q�r� + ��r� = �
k

Q�r − Rk,�k� + ��r� . �3�

A. General formalism

For an open system where the charged particles are at a
chemical potential � and at absolute temperature T, the
grand partition function is given by

ZG��,�� = �
N=0

�
1

N ! �3N� �
t=1

N

dRtd�t

	exp�− 
Eelec − 
Eref + �
k=1

N

��Rk,�k�	 , �4�

where 
=1 / �kBT�, kB is the Boltzmann constant, N is the
number of particles, Rk is the position of the kth particle, �k
is its orientation, � is the thermal wavelength of a particle,
and ��r ,��=
��−v�r ,���, where v an arbitrary applied
external field. The integration over the orientation � of a
particle is given explicitly by

� d� → �
0

� sin �d�

2
�

0

2� d

2�
�

0

2� d�

2�
,

where �, , and � are the Euler angles that specify the par-
ticle orientation.
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The quantity Eelec represents the energy of electrostatic
interaction within the system, and the quantity Eref is the
energy of all other types of interactions �e.g., excluded vol-
ume interactions and hydration forces�. In this work, we fo-
cus on particles that only interact with each other through
electrostatic forces; consequently, Eref=0.

The electrostatic interaction energy for this system is
given by �23,42,43�

Eelec =� drdr�Q�r�G0�r,r��Q�r� − �
k

ese�rk,�k� , �5�

where G0�r ,r��=�−1
r−r�
−1 is the Green’s function of the
Poisson equation, and ese�r ,�� is the self-energy of a par-
ticle

ese�R,�� =
1

2
� drdr�Q�r − R,��G0�r,r��Q�r� − R,�� .

�6�

Much of the behavior of these systems can be rationalized
in terms of a correlation hole �9�—a region of size � around
each counterion, where it is unfavorable for other counteri-
ons to be located. At length scales greater than �, the coun-
terions are weakly correlated, while at shorter length scales,
the counterions are strongly correlated but fairly “isolated”
�15�.

Based on this observation, Weeks and co-workers �20,21�
and Santangelo �22� developed approaches that split the in-
teraction between the ions at short and long ranges. The
long-range interaction is treated within a mean-field approxi-
mation and the short-range interactions with a more precise
approach �e.g., computer simulation, liquid state theory, etc.�.
With an appropriate value for �, these approaches can suc-
cessfully describe Monte Carlo results for the full range of
electrostatic coupling. However, the value of � is determined
empirically. Additionally, these approaches are not capable
of describing systems with dielectric inhomogeneities. In the
theory developed in this work, the short-range interactions
are treated within a strong-coupling expansion; the long-
range interactions are treated with a variational approach,
which accounts for fluctuations in the electric potential. Ad-
ditionally, the value of � is predicted by the theory in a
self-consistent manner.

In order to treat the strong short- and long-range correla-
tions between the charged particles within different approxi-
mations, we split the pair interaction between the particles as

G0�r,r�� = Gs�r,r�� + Gl�r,r�� , �7�

where Gs= �1−P�G0, Gl=PG0, and P is an operator that
filters out the short-wavelength contribution to the interac-
tions. The form of the operator P is fairly arbitrary. In this
work, we will explore three different choices

P = ��1 − �2�2�−1, Santangelo

e�2�2
, Weeks and co-workers

�1 − �2�2 + �4�4�−1, p4.
�

�8�

In these forms for P, the parameter � denotes the length
scale, which separates short-wavelength from long-
wavelength phenomena. This parameter can be interpreted as
characterizing the size of the correlation hole.

To emphasize the distinction between the short- and long-
wavelength contributions to the electrostatic interaction en-
ergy of the system, we rewrite Eq. �5� as

Eelec = Ese +
1

2
� drdr�Q�r�Gl�r,r��Q�r�

+
1

2
� drdr�q�r�Gs�r,r��q�r�

+ �
k

�u�Rk,�k� − es
se�Rk,�k�� , �9�

where Ese is the short-range self-energy of the fixed charges

Ese =
1

2
� drdr���r�Gs�r,r����r�� , �10�

and u is a one-particle interaction potential due to short-
wavelength interactions, which is given by

u�R,�� =� drdr�Q�r − R,��Gs�r,r����r�� − el
se�R,�� .

�11�

The self-energy ese of the charged particles has been divided
into two separate contributions, el

se and es
se, which are given

by

el
se�R,�� =

1

2
� drdr�Q�r − R,��Gl�r,r��Q�r� − R,�� ,

and

es
se�R,�� =

1

2
� drdr�Q�r − R,��Gs�r,r��Q�r� − R,�� .

Using the Hubbard-Stratonovich transformation �44,45�,
we convert the expression for the grand partition function
�see Eq. �4�� into a functional integral over two fields: �l,
which fluctuates over predominately large length scales, and
�s, which fluctuates over predominately short length scales.
The grand partition function can then be rewritten as

ZG��,�� =
e−
Ese

Nl
� D�l� · �

	exp−
1

2

� drdr��l�r�Gl�r,r���l�r��

+ ln Z̄G
ref�� − 
u + 
es

se − Qi�l�� , �12�
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where Z̄G
ref is a coarse-grained partition function of the refer-

ence system, which is given by

Z̄G
ref�� − 
u + 
es

se − Qi�l� � �ZG
ref�� − 
u + 
es

se − Qi�l

− Qi�s��s �13�

where the average is defined as

�� ¯ ��s �
1

Ns
� D�s� · �� ¯ �

	exp�−
1

2

� drdr��s�r�Gs

−1�r,r���s�r��	 ,

�14�

and the normalization constants are

Nl =� D�� · �exp�−
1

2

� drdr���r�Gl

−1�r,r����r��	 ,

�15�

Ns =� D�� · �exp�−
1

2

� drdr���r�Gs

−1�r,r����r��	 .

�16�

The functional ZG
ref is the grand partition function of the

reference system �i.e., the system where there are no electro-
static interactions�. In this work, the reference system is an
ideal gas, which has a grand partition function given by

ln ZG
ref��� = �−3� dRd�e��R,��. �17�

The expression in Eq. �12� is formally exact; however, in
order to perform meaningful calculations, approximations
need to be made.

B. Approximation scheme

The strategy here is to treat the long-wavelength interac-
tions within a variational perturbation expansion �46� and the
short-range interactions within a strong-coupling expansion
�14,15,20–22�. The physical motivation for doing this is
based on the important observation that the charges are
strongly correlated at short length scales �energy larger kBT�
and only weakly correlated over long length scales.

The functional integration over the short-wavelength
modes is performed by using a cumulant expansion

ln Z̄G
ref��� � �ln ZG

ref�� − Qi�s��s

+
1

2
�ln ZG

ref�� − Qi�s�ln ZG
ref�� − Qi�s��s

�c� + ¯ ,

�18�

where the superscript �c� denotes a cumulant average. This is
equivalent to an expansion in the fugacity of the particles in
the system. Using the ideal-gas reference system, this be-
comes

ln Z̄G
ref��� � �−3� dRd�e��R,��−
es

se�R,�� + ¯ , �19�

where only the first-order term of the cumulant expansion
has been retained.

In order to evaluate the functional integral over the long-
wavelength field �l, we use a variational perturbation expan-
sion �43,46,47�. In this method, the fluctuations of the field
are assumed to be well approximated by a Gaussian distri-

bution, with a mean value of �̄l and a spatial correlation of
GK�r ,r��,

HK��l� =
1

2

� drdr���l�r� − �̄l�r��GK

−1�r,r����l�r��

− �̄l�r��� , �20�

where GK is the renormalized Green’s function, which is
given by

GK
−1�r,r�� = Gl

−1�r,r�� + K�r,r�� .

Physically, GK�r ,r�� is the renormalized Green’s function,
which represents how the influence of a charge propagates
through the system. The quantity K�r ,r�� is a screening
function, and it quantifies how the presence of mobile
charges modifies the behavior of the system. This quantity is
related to the Debye screening length, as will be discussed
below.

Deviations of the field from Gaussian statistics are ac-
counted for by a cumulant expansion. Truncating the varia-
tional perturbation expansion at first order, we find

ln ZG��,�� � �ln Z̄G
ref�� − 
u + 
es

se − Qi�̄l − Qi��l��K

+
1

2

� drdr�i�̄l�r�Gl

−1�r,r��i�̄l�r��

−� dr��r�i�̄l�r� −
1

2
�

0

1

d� Tr K�G�K − GK�

−



2
� drdr���r�Gs�r,r����r�� , �21�

where G�K
−1 =Gl

−1+�K, and the average ��¯ ��K is defined as

�� ¯ ��K =
1

NK
� D��� · �� ¯ �

	exp�−
1

2

� drdr����r�GK

−1�r,r�����r�	 ,

�22�

with the normalization constant NK given by

NK =� D��� · �exp�−
1

2

� drdr����r�GK

−1�r,r�����r�	 .

For the case where the reference system is an ideal gas, the
expression for the coarse-grained partition function of the
reference system is given by Eq. �19�, and Eq. �21� becomes
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ln ZG��,�� � �−3� dRd� exp���R,�� − 
u�R,��

− 
eK
se�R,�� −� drQ�r − R,��i�̄l�r�	

+
1

2

� drdr�i�̄l�r�Gl

−1�r,r��i�̄l�r��

−� dr��r�i�̄l�r� −
1

2
�

0

1

d� Tr K�G�K − GK�

−



2
� drdr���r�Gs�r,r����r�� , �23�

where

eK
se�R,�� =

1

2
� drdr�Q�R − r,��GK�r,r��Q�R − r�,�� .

�24�

The choice of the quantities �̄l and K is, in principle,
arbitrary. In an exact theory, the physical properties of the
system are not dependent on their values. However, the pre-
dictions of an approximate theory will, in general, depend on

the particular choice of �̄l and K. In the variational approach,
the form of these functions is chosen to make the grand
partition function stationary with respect to small variations
in these functions

� ln ZG��,��

�i�̄l�r�
= 0, �25�

� ln ZG��,��
�K�r,r��

= 0. �26�

The first condition �Eq. �25�� leads to a Poisson equation

−
1

4�
�2��r� =� dRd�Q�r − R,����R,�� + ��r� ,

�27�

where ��R ,�� is the density distribution of the particles,
given by

��R,�� = �−3 exp���R,�� − 
u�R,�� − 
eK
se�R,��

−� drQ�r − R,��i�̄l�r�	 , �28�

and �=
−1P−1i�̄l is the electric potential. From this, we see

that the field i�̄l can be interpreted as the slowly varying
portion of the electric potential.

The second condition �Eq. �26�� leads to an expression for
the screening function K. In the case where the particles
interact only through electrostatic forces �so the reference
system is an ideal gas, see Eq. �17�� and where the cumulant
expansion for the short-wavelength field �see Eq. �18�� is
truncated at first order and the variational perturbation ex-

pansion for the long-wavelength field is also truncated at first
order, Eq. �26� yields

K�r,r�� = 
� dRd�Q�r − R,����R,��Q�r� − R,�� .

�29�

The Helmholtz free energy F of the system can be obtained
by performing a Legendre transform of the grand partition
function �see Eq. �23��, which yields


F��,�� � � dRd���R,���ln ��R,���d − 1�

+
1

2
�

0

1

d� Tr K�G�K − Gl�

+
1

2

� drdr�i�̄l�r�Gl

−1�r,r��i�̄l�r��

+ 
� drdr�Q�r − R,��Gs�r,r����r��

+



2
� drdr���r�Gs�r,r����r�� . �30�

The first term is the ideal-gas contribution to the free en-
ergy. The second term is the long-wavelength fluctuation
contribution to the electrostatic interaction energy. The third
term is a combination of the short-wavelength contribution
to the self-energy of the background charge and the short-
range interaction energy between the free charges in the sys-
tem and the background charge.

As with the functions �̄ and K, the properties of the exact
theory should be independent of the choice of the splitting
parameter �. On the other hand, approximate theories do
depend on �. The particular value of � controls the rate at
which the sum of the cumulant �short wavelength� and the
variational perturbation �long wavelength� expansions con-
verges to the exact theory. The value of the parameter � is
determined by the condition

�F���
��

= 0. �31�

This approach is similar to the optimized random-phase ap-
proximation �48�.

The above theory is complete. The main difficulty in
evaluating the theory is the determination of the Green’s
function GK and the evaluation of the fluctuation integral
�the second term in Eq. �30��. However, in the case of a
translationally invariant system, these quantities simplify
greatly. We discuss this case below.

C. Translationally invariant systems

Now, we further limit our attention to the situation where
the fixed charge distribution ��r� is a rigid, uniformly dis-
tributed, and three-dimensional background charge �i.e.,
��r�=�=−q�� and where the system is translationally in-

variant �i.e., ��R ,��=�����. Then, i�̄l�r�=0, and the
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screening function becomes diagonal in Fourier space

K̂�p� = 
� d�����
Q̂�p,��
2, �32�

and the one-body potential is given by

u�R,�� = qĜs�0�� −
1

2
�

p

Q̂�p,��
2Ĝl�p� . �33�

The Helmholtz free energy of the system reduces to


F���
V

�� d������ln �����d − 1�

+
1

2
�

p
ln�1 +

P̂�p��2�p�
p2 	 −

P̂�p��2�p�
p2 �

−
�2lB

2
Ĝs�0� , �34�

where V is the volume of the system, and lB=
q2 /� is the

Bjerrum length, and �2�p�=4�K̂�p� is a wave-vector-
dependent inverse Debye screening length. For the Santan-

gelo and the p4 splitting operators, Ĝs�0�=4��2, and
Gl�r ,r�= ��3��−1. For the splitting of Weeks and co-workers,

Ĝs�0�=4��2, and Gl�r ,r�= �����−1.
Equations �32�–�34� form a complete theory for transla-

tionally invariant one-component plasmas. In the following
sections, we apply this theory to systems of point charges,
8-mer rods of point charges, and line charges.

III. ONE-COMPONENT PLASMA OF POINT CHARGES

In this section, we apply the theory developed in the pre-
vious section to the classical one-component plasma, which
consists of point charges of magnitude q �i.e., Q�r�=q�d�r�
and Q̂�p�=q� in a uniform neutralizing background charge.
There are two key length scales in this system. The first is
the Bjerrum length lB=
q2 /�, the distance at which two
counterions interact with energy kBT. The other length scale
is the mean spacing a between the ions, which for the OCP is
given by a= �4�� /3�−1/3, where � is the number density of
ions in the system. The ratio of these two length scales de-
fines the coupling parameter �

� =
lB

a
= �4�

3
�lB

3�1/3

, �35�

which characterizes the strength of the electrostatic interac-
tions in the system.

For point charges, the screening length is directly related
to the plasma coupling parameter and is given by

�2�p� = 4��lB =
3

lB
2 �3. �36�

The screening length is independent of the wave vector p,
which implies that the particles can screen charge equally
well on all length scales.

The Debye-Hückel theory provides the simplest descrip-
tion of the OCP. The Debye-Hückel expression for the elec-
trostatic contribution to the Helmholtz free energy is


Felec

V
= −

�3

12�
, �37�

and the corresponding expression for the internal energy is


U

N
= −

�3

8��
= −

�3

2
�3/2, �38�

where N is the number of charged particles in the system.
Combining the expression for the screening length given

in Eq. �36� with a choice for the operator P �e.g., see Eq.
�8��, we can compute the free energy of the point-charge
OCP by evaluating Eq. �34�. With the Santangelo expression
for P, we can evaluate the required integrals analytically. In
this case, the electrostatic contribution to the Helmholtz free
energy Felec �i.e., the sum of the second and third terms in
Eq. �34�� is given by


Felec

V
= −

�3

12�
� �1 − ����1 + 2���1/2 − 1 +

3

2
����2

����3 �
−

�

2
����2. �39�

The associated expression for the internal energy is


U

N
= −

�3

8��
�1 − �1 + 2���−1/2

��
	 −

����2

2
. �40�

If � is directly set equal to zero, then the Debye-Hückel
theory is recovered. This corresponds to neglecting the
strong correlations, which occur between the particles at
small length scales.

The value of � needs to be determined by minimizing the
free energy. Unfortunately, this cannot be done analytically,
but expressions can be obtained for limiting cases. For small
values of ��, the free energy can be approximated by


Felec

V
= −

�3

12�
�1 −

9

8
���� +

3

2
����2 + ¯	 −

�

2
����2.

�41�

By optimizing this expression with respect to the parameter
�, we obtain

� =
3

8
lB�1 − �3��3/2 + ¯� . �42�

Therefore, at low values of the plasma coupling parameter
�i.e., low ion density�, the size of � is directly related to the
Bjerrum length. For large values of ��, the free energy can
be approximated by
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Felec

V
= −

�3

4�
�1

2
����−1 −

�2

3
����−3/2 +

�2

4
����−5/2 + ¯	

−
�

2
����2. �43�

In this limit, the parameter � is given by

2�lB

�
= 2��6�3�1/3� + ¯ . �44�

At high values of the plasma coupling parameter, � is ap-
proximately proportional to the spacing a= lB /� between the
counterions.

Expressions for the free energy can also be developed
with the p4 and Gaussian forms of the splitting operator �see
Eq. �8��; however, in these cases, the results no longer lead to
closed analytical forms and need to be evaluated numeri-
cally.

The variation in the splitting parameter � with the cou-
pling parameter is presented in Fig. 1. The value of � de-
creases with the strength of the electrostatic coupling. At
small values of the coupling parameter, which corresponds to
low ion concentrations, � becomes proportional to the Bjer-
rum length lB. At large values of the coupling parameter,
where the ions are in close proximity, � is nearly linear with
the spacing between the ions. This is in agreement with the
approaches �10,11� of introducing a high wave-vector cutoff,
where the cutoff was found to be inversely proportional to
the ion spacing. When the density is fairly low, the counte-
rions interact weakly with each other �the weak-coupling re-
gime�. In this case, the size of the correlation hole is related
to the Bjerrum length. When the ions are densely packed and
forced to be within a distance lB from each other, they inter-
act very significantly with each other �the strong-coupling
regime�. In this limit, the size of the correlation hole is re-
lated to the mean spacing a between the ions.

In Fig. 2, the variation in the electrostatic interaction en-
ergy with the coupling parameter is presented. The symbols
are the results of computer simulations. The open circles are
the Monte Carlo simulation data from Refs. �49,50�. The
solid square are from molecular-dynamics simulations we

performed using the GROMACS package �51–54�. The simu-
lations were performed in the NVT ensemble with 128 point
charges at low values of the coupling parameter ���100�
and 1024 point charges for higher values of the coupling
parameter ���100�. There is good consistency between our
simulation data and Monte Carlo simulation data.

The Debye-Hückel theory given by the dotted line se-
verely overpredicts the strength of the electrostatic interac-
tion, in comparison with the simulation data. The predictions
of the theory developed in this work with the Santangelo
splitting are given by the dashed line. This represents a sub-
stantial improvement over the Debye-Hückel theory; how-
ever, it still overestimates the magnitude of the electrostatic
interaction energy. The predictions of the theory with the p4

splitting are given by the solid line, which are in very good
agreement with the Monte Carlo simulation data, although
they still slightly overestimate the magnitude of the interac-
tion energy. Note that the predictions of the theory with the
Weeks’ �Gaussian� splitting �not shown� are nearly identical
with those of the p4 splitting.

We find that this theory can describe the internal energy of
the system well into the strong-coupling regime for the
point-charge OCP model. This approach is similar to the cor-
relation hole corrected Debye-Hückel theory �9� and the
Gaussian field theory with a cutoff pcut in p space �10�,
where the parameter � is analogous to the size of the corre-
lation hole or �2� / pcut. However, the downside of these
approaches is the need to include an empirical parameter
based on physical grounds such as the correlation hole �9,12�
or the high wave-vector cutoff �10,11�. This is not required in
our work. One key advantage of this is that the size of the
correlation hole can be determined even in situations where
it is not clear how � should depend on the plasma coupling
parameter, which occurs when charged particles are no
longer point objects.

IV. ONE-COMPONENT PLASMA OF 8-MER RODS

In this section, we examine the influence of the intramo-
lecular structure on the properties of the OCP. We consider a
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FIG. 1. The splitting parameter as a function of the coupling
parameter. The solid line is for the p4 splitting, and the dashed line
is for the Santangelo splitting.
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system of linear 8-mer rods. Each rod consists of n=8 point
charges, each of magnitude q /n, arranged in a line; adjacent
charges are separated by a distance L /n. The number density
of the rods is �, and the number density of the point charges
�monomers� is n�.

In this case, the charge distribution is given by

Q�r,�� =
q

n
�
k=1

n/2

���r − �2k − 1�n̂���L/�2n��

+ ��r + �2k − 1�n̂���L/�2n��� , �45�

and the Fourier transform of the charge distribution is given
by

Q̂�p,�� =
2q

n
�
k=1

n/2

cos��2k − 1�p · n̂���L/�2n�� , �46�

where n̂ is a unit vector that points parallel to the axis of the
rod.

For this system, the three fundamental length scales are
the Bjerrum length lB, the mean distance between the rods a,
and the length of the rods L. In addition to the plasma cou-
pling parameter �, another important dimensionless quantity
is L / lB, which measures the length of the rods relative to the
range of electrostatic interactions in the system. Note that
L / lB=0 corresponds to the standard OCP model �i.e., the
point-charge limit�.

In the context of polyelectrolyte systems, the length scales
that are typically used are the Bjerrum length �B defined in
terms of the charge of the monomers q /n,

�B =

�q/n�2

�
= n−2lB,

the mean distance between the rods a, and the distance b
=L /n between the charges on the rods. With these length
scales, the key dimensionless parameters are the value of the
coupling parameter �0 defined in terms of the monomer den-
sity and the monomer Bjerrum length

�0 = �4�

3
n��B

3�1/3

and b /�B=nL / lB, the spacing between monomers in terms of
the monomer Bjerrum length.

For an isotropic system, where ����=�, the screening
length is given by

�2�p� = 4��lB
2

n2 �
j,k=1

n/2 � sin�j − k�pL/n
�j − k�pL/n

+
sin�j + k − 1�pL/n

�j + k − 1�pL/n 	 .

�47�

Unlike the point-charge system, the screening function for
the 8-mer rod system depends on the wave vector. Because
the system is isotropic, the screening function depends only
on the magnitude of the wave vector. Due to their rigid ex-
tended charge distribution, the rods are more effective at
screening features at length scales greater than their size than
those that are much smaller.

In this section, we will restrict ourselves to using the p4

form for the operator P. The variation in the splitting param-
eter � with the length of the rod and the plasma parameter is
presented in Fig. 3. The case L / lB=0 corresponds to the
point-charge system discussed in the previous section; for
this system at high values of �, the splitting parameter is
nearly proportional to the coupling parameter. At low rod
densities �i.e., low values of ��, the variation in � for all the
8-mer lengths is similar to that for the point-charge model.
This is expected, since at these at low densities, the 8-mers
are spaced sufficiently far apart that their structure is not
important. However, as the density of the particles increases,
the structure of the particles becomes important, and the
longer particles have a smaller value of �. That is, the cor-
relation hole is smaller for the longer particles. The value of
� at which the behavior of the 8-mer rods deviates from that
of the point charges depends on the length of the rod: the
longer the rod, the sooner the deviation.

At higher values of �, the splitting parameter again be-
comes independent of the length of the particles. This occurs
when the distance between the point charges on the 8-mer
�i.e., L /n� becomes comparable to the mean distance a
= lB /� between the 8-mers. In this case, the length of the
particles is no longer important in determining the size of the
correlation hole. The size of � is essentially the same as a
point-charge model, where the ions have charge q /n and a
density equal to n�, where � is the number density of the
8-mer rods in the system. Note, however, this only applies to
the size of the correlation hole; the other properties of the
system are distinct from the point-charge model as the point
charges within each 8-mer are still rigidly bonded and, there-
fore, strongly correlated.

In order to test the theoretical predictions for the internal
energy of the OCP of 8-mer rods, NVT molecular-dynamics
simulations were performed using the GROMACS package
�51–54�. The distance between consecutive point charges
was constrained to a fixed distance L /n using the linear con-
straint solver algorithm �55�. There are no electrostatic inter-
actions between the charges within the rods. The stiffness of
the chain is achieved by the use of a harmonic bending po-
tential
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Ubend��� =
K

2
�� − �0�2, �48�

where � is the angle between two consecutive bonds, �0=�,
and K is the force constant. The value of K is chosen to be
sufficiently large to ensure that the 8-mers remained rigid.

In all the simulations, the size of the box was larger than
twice the length of the 8-mers. The electrostatic interactions
were calculated with the particle-mesh Ewald method �56�.
The temperature of the simulations was kept constant using
the Nose-Hoover algorithm �57�. The Bjerrum length was
varied by adjusting the temperature T of the system.

The electrostatic contribution to the internal energy of
8-mer rods of varying length is given in Fig. 4. The lines are
the predictions of the present theory, and the symbols are the
results of the molecular-dynamics simulations. The situation
where L / lB=0 corresponds to a system of point charges,
which was discussed in the previous section. At low values
of �, where the particle density is low, the energy of the rod
systems is the same as that for the point-charge system. This
region corresponds to �0�1, where the mean spacing be-
tween the monomers is larger than the monomer Bjerrum
length. However, once the rods significantly overlap and the
interactions between the monomers become significant �i.e.,
�0�1�, the energy becomes more positive for the rod sys-
tems. As the length of the rod increases, the electrostatic
interaction energy of the system becomes less attractive. This
is due to the fact that the longer rods are less effective in
rearranging themselves in configurations that minimize their
mutual repulsive interactions. Overall, the agreement be-
tween the theory and the simulation results is quite good;
however, in all cases the theory slightly overpredicts the
magnitude of the interaction energy.

V. ONE-COMPONENT PLASMA OF CONTINUOUS
RODLIKE POLYELECTROLYTES

In this section, we study systems of particles with an in-
finitely thin uniform line charge of length L and total charge
q in a neutralizing uniform background charge. The number
density of the rods is �. The charge distribution for these
particles is given by

Q�r,�� = q�
−1/2

1/2

ds��r − n̂���L�s − 1/2�� , �49�

where n̂ is a unit vector that points parallel to the axis of the
rod, and s denotes the scaled distance along the rod. The
corresponding expression for the Fourier transform of the
charge distribution is

Q̂�p,�� = q� sin p · n̂���L/2
p · n̂���L/2 	 . �50�

The OCP rod model can be considered as providing a
complementary description of polyelectrolyte solutions to
the cell model �27–31,33�. In the cell model, the counterions
are treated explicitly, and the many-body correlations be-
tween the rods are neglected. On the other hand, within the
OCP rod model, the counterions are treated simply as a rigid
neutralizing background charge, and the many-body rod in-
teractions are treated in detail.

The one-component plasma of line charges was previ-
ously studied by Deutsch and Goldenfeld �34,35�. Their ap-
proach is similar to an extension of the Debye-Hückel theory
to line charges �39–41,43�. This corresponds to setting the
splitting parameter �=0 in our approach.

For an isotropic system, the screening length is

�2�p� = 4��lB2�Si�pL�
pL

−
1 − cos�pL�

�pL�2 	 , �51�

where Si�x�=�0
xdt sin�t� / t is the sine integral. In this case,

the screening function and the Green’s function GK depend
only on the magnitude of the wave vector p. This reflects the
relative inefficiency of the charged rods to screen inhomoge-
neities in the electric potential, due to their size. Given the
expression for the screening length and a choice for the split-
ting operator, we can make predictions of the properties of
the line charge system. In this section, we will restrict our-
selves to using the p4 form for the operator P.

In Fig. 5, we show the variation in the splitting parameter
� with the coupling parameter �. The parameter � represents
the size of the “correlation hole.” At high values of �, when
the system is dense with respect to the range of the electro-
static repulsions, the correlation hole is comparable to the
mean spacing between the charges. Increasing the length of
the rods at a constant value of the coupling parameter de-
creases the mean spacing between the charges in the system.
This is because the charges are more dispersed—spread out
over the length of a rod rather than concentrated at a single
point. Consequently, we see that the size of the correlation
hole decreases as the length of the rods increase. For the
longer rods, the size of � shrinks dramatically with increas-
ing density.
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FIG. 4. Variation in the electrostatic interaction energy with the
coupling parameter for 8-mer rods with �i� L / lB=0 �solid line,
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in the nematic phase �see the discussion in Sec. VI�.
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The variation in the electrostatic interaction energy with
the coupling parameter � is shown in Fig. 6. The thick lines
are for the continuous rods, and the thin lines are for the
8-mer rods. The electrostatic energy for these two systems is
similar at low values of the coupling parameter �rod densi-
ties�; however, they begin to diverge when the spacing be-
tween the rods becomes smaller than the spacing L /n be-
tween the charges on the 8-mer rods. In this regime, the
energy of the continuous rods becomes higher than that for
the 8-mer rods, as the 8-mer rods can more easily find con-
figurations that avoid unfavorable interactions with each
other.

So far, we have limited our attention to the case where the
systems are isotropic. In the next section, we consider the
formation of an orientationally ordered nematic phase.

VI. ANALYSIS OF THE NEMATIC PHASE

In the previous sections, we have assumed that the system
has remained isotropic and neglected the possibility of ori-

entational ordering of the rods. It has been found that many-
body electrostatic interactions always favor �34,35,39–41,43�
the alignment of charged rods; however, in the weakly
charged regime, the electrostatics cannot overcome the en-
tropic penalty of ordering. It has also been argued that the
rods should favor alignment when they are highly charged
and favor a nematic transition driven by electrostatics. We
examine this effect by using the method developed above to
study highly charged rods in a neutralizing background.

To examine the effect of ordering, we introduce the On-
sager trial function �58� for the density

���� = ��
cosh��n̂0 · n̂����

sinh���
, �52�

where the parameter � quantifies the degree of ordering, and
n̂0 is the preferred orientation direction. The limit �=0 cor-
responds to an isotropic system, and the limit �→� corre-
sponds to a perfectly orientationally ordered system.

Using the Onsager trial function for the density distribu-
tion, the ideal contribution to the Helmholtz free energy �i.e.,
the first term in Eq. �34�� is given by


Fid

V
= ��ln

� cosh �

sinh �
+

arctan sinh �

sinh �
− 1	 + ��ln ��3 − 1� .

�53�

This term gives an entropic penalty for the orientational or-
dering of the rods and, consequently, favors the isotropic
phase.

With the expression for the distribution of orientations
given by Eq. �52�, the inverse screening length for the 8-mer
rods is

�2�p� = 4��lB
4

n2� dn̂�
cosh��n̂0 · n̂�

sinh �

	��
k=1

n/2

cos��2k − 1�p · n̂���L/�2n��	2

, �54�

and for the line charges is

�2�p� = 4��lB� dn̂�
cosh��n̂0 · n̂�

sinh �
� sin�p · n̂L/2�

p · n̂L/2 	2

.

�55�

An isotropic system corresponds to �=0. In this case, the
screening length and therefore the Green’s function GK de-
pend only on the magnitude of the wave vector p. This re-
flects the fact that the ability of the ordered plasma to screen
a given charge distribution depends on its orientation relative
to the nematic director.

Given the expression for the screening length of the sys-
tem, we can compute the Helmholtz free energy of the sys-
tem by using Eq. �34�. The value of the ordering parameter �
is determined by minimizing the Helmholtz free energy,
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�
F

��
= 0. �56�

If the free energy of the system when it is orientationally
ordered �i.e., ��0� is lower than when it is isotropic �i.e.,
�=0�, then the system will be in the nematic phase. When
the opposite is true, it will be in the isotropic phase.

The phase diagram of the OCP rods is presented in Fig. 7.
The shaded region represents conditions where the system is
nematic, while the unshaded region is where the system is
isotropic. The coupling parameter � acts as an effective den-
sity, and the dimensionless parameter L / lB acts as an effec-
tive temperature. For sufficiently small values of L / lB �which
corresponds to low temperature or strongly charge rods�, the
length of the rods is too small to drive a nematic transition,
and it is expected that the system will be in an isotropic
phase. In addition, we expect that for large values of L / lB,
the system should also be entirely in the isotropic phase be-
cause the electrostatic coupling is too weak to induce an
ordered phase. There should be a closed-loop region, where
the nematic phase exists with upper and lower critical points.
The electrostatic interactions always favor the formation of
the nematic ordering of the rods �39–41,43�, so one might
expect the existence of an ordered phase at intermediate val-
ues of L / lB. This is indeed the case.

The lightly shaded region denotes the nematic phase for
the line charges, while the dark shaded region denotes the
nematic phase for the 8-mer rods. The nematic phase is
stable over a much larger range of conditions for the line
charge system than for the 8-mer system. Therefore, the size
of the nematic phase is expected to increase as the number of
point charges on an n-mer rod, with the same overall charge
and length, increases. The distribution of charge on the rod
seems to have a significant influence on the stability of the
nematic phase.

In this work, we have been examining a model where
there are no excluded volume interactions between the
charged rods. To better understand when these interactions
will become significant in comparison to the electrostatic
interactions, we plot in the inset of Fig. 7 the phase diagram

of the charged rods in terms of the variable �L3. This vari-
able, unlike the coupling parameter �, is independent of the
charge on the rods. The larger the charge density of the rods
�i.e., the smaller L / lB�, the lower the density of the isotropic-
nematic transition.

According to Onsager theory �58,59�, for uncharged rods
of diameter D and length L, the excluded volume interactions
will cause an isotropic to nematic transition at a density

�L3 � 4.2
L

D
.

Therefore, the relative contribution of the electrostatic and
excluded volume interactions is given by the aspect ratio of
the rods. For example for rods with an aspect ratio of L /D
=100, the isotropic-nematic transition �due to excluded vol-
ume interactions alone� will occur at �L3�420. For values
of L / lB�0.07, the electrostatic interactions between the rods
will cause the nematic phase to form at a lower rod density.
For example at L / lB=0.05, the electrostatic interactions lead
to the formation of a nematic phase at �L3�100. An ex-
ample of such a system is a rod with an overall charge of
100e0 �e0 is the fundamental unit of charge�, where the dis-
tance between charges is b=5�B. In this case, the charge
density of the rod is sufficiently weak that the counterions
will not condense on the surface of the rod, and the counte-
rions can consequently be treated as a uniformly charged
background. In water at ambient conditions �B�0.7 nm
and, therefore, this would correspond to a rod with length
L=350 nm �for L / lB=0.05� and diameter D=3.5 nm �for
L /D=100�. At these conditions, the electrostatic interactions
primarily drive the ordering of the rods rather than the ex-
cluded volume interactions. At lower rod charge densities or
lower aspect ratios, however, the isotropic-nematic transition
will be primarily due to the excluded volume. Therefore, the
phase diagram presented in Fig. 7 is only valid for rods with
a very large aspect ratio.

The transition from the isotropic to nematic phase is
strongly first order. The variation in the order parameter S of
an OCP of line charges with the coupling parameter is given
in Fig. 8. The order parameter S characterizes the degree of
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orientational ordering that is present in a system. A value of
0 corresponds to an isotropic system, and a value of 1 cor-
responds to a perfectly orientationally aligned system.
Within our theory, S is related to the parameter � as

S = 1 +
3

�2�1 − ��1 − e−2��
1 − e−2� 	 .

In the nematic phase formed, the rods are highly ordered.
This is consistent with the predictions of Deutsch and Gold-
enfeld �34,35�.

In Fig. 5, the thick lines are for systems in the isotropic
phase, and the thin lines are for systems in the nematic
phase. As the systems change from an isotropic phase to an
ordered nematic phase, there is an associated increase in the
size of the correlation hole. This can be rationalized in terms
of an increase in the mean spacing between the rods. In the
nematic phase, the charges on the rods are further from each
other, on average, as compared to the isotropic phase. Note
that this transition is driven purely by electrostatic interac-
tions, as there are no other interactions in this model. The
ordering of the rods is also accompanied by a discontinuous
decrease in the electrostatic interaction energy �see Fig. 4 for
the 8-mers and Fig. 6 for the line charges�. The energy of the
nematic phase is lower than the isotropic phase, although the
difference is not very large.

A strongly ordered nematic phase was observed in the
molecular-dynamics simulations of the 8-mer systems at
L / lB=0.025 for coupling parameters ��370. This can be
seen in the slight discontinuity of the electrostatic energy of
the system shown in Fig. 4. While the change in the order
parameter of the system is quite large, the decrease in the
energy of the system across the isotropic-nematic transition
is fairly small; this is in agreement with the theory. However,
the transition occurs at a much higher value of � than pre-
dicted by the theory. This may be due to the fact that there is
only a slight free-energy difference between the nematic and
isotropic phases. Consequently, while the theory is capable
of computing the absolute properties of the rod systems
rather accurately, the free-energy difference between the two
phases may be too subtle for the theory to precisely predict
the transition.

VII. CONCLUSIONS

In this work, we have developed an approximate theory to
describe the properties of mobile particles with extended

charge densities in the presence of a background charge. By
dividing the fluctuations of the electric potential into short-
wavelength and long-wavelength contributions and treating
each of these within an appropriate approximation scheme,
this theory is able to provide quantitative predictions for the
properties of these systems from the weak- to the strong-
coupling regimes.

We apply this theory to investigate the properties of a
one-component plasma composed of point charges, 8-mer
rods of point charges, and continuous line charges. In each of
these systems, the theory is able to provide quantitatively
accurate predictions for the electrostatic interaction energy,
with respect to molecular-dynamics simulation data. How-
ever, the theory slightly overpredicts the magnitude of the
interaction.

For the rod systems, a nematic phase is present over a
window of rod lengths L / lB. The formation of this phase is
driven entirely by electrostatic interactions. If the rod length
is too small, then the rods are too short to order. If the rods
are too long, then the charge density is too weak for the
electrostatic interactions to order the rods. The nematic phase
is much more stable for the continuous line charges than for
the 8-mer rods. Therefore, we find that the phase behavior of
linear polyelectrolytes is sensitive to their charge distribu-
tion.

In future, we intend to extend this work beyond the one-
component plasma model to include polyelectrolyte systems
with mobile counterions. Unlike for the one-component
plasma model, excluded volume interactions cannot be ne-
glected for this system, as these are required to counter the
detrimental collapse of the counterions onto the polyelectro-
lytes. In order to properly represent this short-wavelength
feature of the system within the present theory, the cumulant
expansion for the functional integral over the short-
wavelength interaction field �s must be evaluated to at least
second order. It is only at this level of approximation that the
balance between the attractive electrostatic interactions and
the repulsive excluded volume interactions between the
counterions and the polyelectrolytes can be captured. Work
along these lines is currently under way.
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